If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-392=0
a = 1; b = 2; c = -392;
Δ = b2-4ac
Δ = 22-4·1·(-392)
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{393}}{2*1}=\frac{-2-2\sqrt{393}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{393}}{2*1}=\frac{-2+2\sqrt{393}}{2} $
| 3n+4=5n+8 | | -12p-10=50 | | 4a(1+a)-(4a)-a=5(a-9) | | 17/3x=85 | | 4a(1+a)-(4a*4a)-a=5(a-9) | | 17/5x=85 | | 5x+45+20x=180 | | 4a(1+a)-4a-a=5(a-9) | | 4x+16=15x+75 | | -5x^2+9x-6=0 | | 13x-27=4x+3=7x+4 | | X-(x*0.5)=950 | | 10x^2-12x+4=116 | | 16^-x+5=32 | | -2.2=u/5+10.3 | | (2=y)/4(2=y)=2+1/y | | 7/4x+13=0.25(2x-32) | | 7x+1=13x-11 | | -4x+17/3=3 | | 5x+44=8x-13 | | 8x-46+10x-8=180 | | 3x-11+90=180 | | 7x+9-9x=5 | | 5=2√3x | | 67=2x-3 | | 3+24.5t-4.9t^2=0 | | 23x-25x=6-8 | | 30=10y-5y | | 5=2+√3x | | 7a+(1.4-a)=6.4 | | 5x^2=126 | | 2x=133-9 |